Skip to contents

All functions

apply_NF_simple()
Apply NeighborFinder simplest version on raw data
apply_NeighborFinder()
Apply NeighborFinder on raw data
choose_params_values()
Render a table to give an indication of the values to choose for the prevalence level and the top filtering percentage
compute_precision()
Compute precision rate
compute_recall()
Compute recall rate
cvglm_to_coeffs_by_object()
Apply cv.glmnet() for a list of module IDs and for each prevalence level
data
data
final_step()
Gather lists of neighbors of true ones from the graph and detected ones from cv.glmnet()
find_all_module_neighbors()
Apply cv.glmnet() for a list of module IDs
find_module_neighbors()
Apply cv.glmnet() for a given mmodule ID
get_count_table()
Conversion to count table function with prevalence filter (Extracted from OneNet package)
graph_step()
Generate a graph with a "cluster-like" structure, only needed for simulation purposes
graphs
graphs
identify_module()
List the modules corresponding to a given object of interest
intersections_network()
Display the intersection network from 2 or more datasets
intersections_table()
Display the intersection table summarizing the results from 2 or more datasets
mclr()
Modified central log ratio (mclr) transformation extracted from the SPRING package
metadata
metadata
module_to_node()
Correspondence between the module ID (msp or functional module) and its name (bacteria or function)
new_synth_data()
Simulate data from some empirical count dataset with a "cluster-like" structure
norm_data()
Normalize data and filters it by prevalence level
prev_for_selected_nodes()
Extract edges in graph involving any module in object_of_interest set
res_by_filtering()
Give results from cvglm_to_coeffs_by_object() for each filtering top percentage
simulate_by_prevalence()
List the simulated count tables by level of prevalence
simulate_from_ecdf()
Simulate data (extracted from OneNet package) Generates synthetic count data based on empirical cumulative distribution (ecdf) of real count data
taxo
taxo
test_filter()
Render a table gathering precision and recall rates before and after filtering on coefficient values
truth_by_prevalence()
Give true neighbors by level of prevalence
visualize_network()
Display network after applying NeighborFinder