Package index
-
apply_NF_simple() - Apply NeighborFinder simplest version on raw data
-
apply_NeighborFinder() - Apply NeighborFinder on raw data
-
choose_params_values() - Render a table to give an indication of the values to choose for the prevalence level and the top filtering percentage
-
compute_precision() - Compute precision rate
-
compute_recall() - Compute recall rate
-
cvglm_to_coeffs_by_object() - Apply cv.glmnet() for a list of module IDs and for each prevalence level
-
data - data
-
final_step() - Gather lists of neighbors of true ones from the graph and detected ones from cv.glmnet()
-
find_all_module_neighbors() - Apply cv.glmnet() for a list of module IDs
-
find_module_neighbors() - Apply cv.glmnet() for a given mmodule ID
-
get_count_table() - Conversion to count table function with prevalence filter (Extracted from OneNet package)
-
graph_step() - Generate a graph with a "cluster-like" structure, only needed for simulation purposes
-
graphs - graphs
-
identify_module() - List the modules corresponding to a given object of interest
-
intersections_network() - Display the intersection network from 2 or more datasets
-
intersections_table() - Display the intersection table summarizing the results from 2 or more datasets
-
mclr() - Modified central log ratio (mclr) transformation extracted from the SPRING package
-
metadata - metadata
-
module_to_node() - Correspondence between the module ID (msp or functional module) and its name (bacteria or function)
-
new_synth_data() - Simulate data from some empirical count dataset with a "cluster-like" structure
-
norm_data() - Normalize data and filters it by prevalence level
-
prev_for_selected_nodes() - Extract edges in graph involving any module in object_of_interest set
-
res_by_filtering() - Give results from cvglm_to_coeffs_by_object() for each filtering top percentage
-
simulate_by_prevalence() - List the simulated count tables by level of prevalence
-
simulate_from_ecdf() - Simulate data (extracted from OneNet package) Generates synthetic count data based on empirical cumulative distribution (ecdf) of real count data
-
taxo - taxo
-
test_filter() - Render a table gathering precision and recall rates before and after filtering on coefficient values
-
truth_by_prevalence() - Give true neighbors by level of prevalence
-
visualize_network() - Display network after applying NeighborFinder