Skip to contents

Conversion to count table function with prevalence filter (Extracted from OneNet package)

Usage

get_count_table(
  abund.path = NULL,
  abund.table = NULL,
  sample.id = NULL,
  prev.min,
  verbatim = TRUE,
  msp = NULL
)

Arguments

abund.path

String. Path to the abundance table

abund.table

Dataframe. Abundance table, it should have the bacterial species names as first column

sample.id

String vector. IDs of samples to keep in the final table

prev.min

Numeric. The value is between 0 and 1 and corresponds to the minimal prevalence threshold of bacterial species to keep in the final table

verbatim

Boolean. Controls verbosity

msp

String vector. It indicates bacterial species names, if they are not specified in the abundance table first column

Value

A list containing

data:

the final count table (tibble)

prevalences:

a tibble gathering the prevalence of each bacterial species

Examples

tiny_data <- data.frame(
  msp_name = c("msp_1", "msp_2", "msp_3", "msp_4"),
  SAMPLE1 = c(0, 1.328425e-06, 0, 1.527688e-07),
  SAMPLE2 = c(1.251707e-07, 1.251707e-07, 3.985320e-07, 0),
  SAMPLE3 = c(0, 0, 4.926046e-09, 5.626392e-06),
  SAMPLE4 = c(0, 0, 2.98320e-05, 0)
)
# Applying a prevalence filter of 30% on the new count_table
count_table <- get_count_table(abund.table = tiny_data, sample.id = colnames(tiny_data), prev.min = 0.3)
#> Preprocessing step output for species prevalence>30% : 
#>    -from 4 to 3 species
#>    -from 50% to 41.7% zero values.