Skip to contents

Display the intersection table summarizing the results from 2 or more datasets

Usage

intersections_table(
  res_list,
  threshold,
  annotation_table,
  col_module_id,
  annotation_level,
  object_of_interest
)

Arguments

res_list

List of dataframes. The results from apply_NeighborFinder() on several datasets

threshold

Numeric. Integer corresponding to the minimum number of datasets in which you want neighbors to have been found

annotation_table

Dataframe. The dataframe gathering the taxonomic or functional module correspondence information

col_module_id

String. The name of the column with the module names in annotation_table

annotation_level

String. The name of the column with the level to be studied. Examples: species, genus, level_1

object_of_interest

String. The name of the bacteria or species of interest or a key word in the functional module definition

Value

Dataframe. Table gathering the intersection of NeighborFinder results from several datasets. The column 'datasets' indicates the datasets in which the same neighbor has been found, the column 'intersections' indicates the number of datasets in which the same neighbor has been found

Examples

data(taxo)
data(data)
data(metadata)
res_CRC_JPN <- apply_NeighborFinder(data$CRC_JPN, object_of_interest = "Escherichia coli", col_module_id = "msp_id", annotation_level = "species")
res_CRC_CHN <- apply_NeighborFinder(data$CRC_CHN, object_of_interest = "Escherichia coli", col_module_id = "msp_id", annotation_level = "species", covar = ~study_accession, meta_df = metadata$CRC_CHN, sample_col = "secondary_sample_accession")
res_CRC_EUR <- apply_NeighborFinder(data$CRC_EUR, object_of_interest = "Escherichia coli", col_module_id = "msp_id", annotation_level = "species", covar = ~study_accession, meta_df = metadata$CRC_EUR, sample_col = "secondary_sample_accession")

intersections_table(res_list = list(res_CRC_JPN, res_CRC_CHN, res_CRC_EUR), threshold = 2, taxo, col_module_id = "msp_id", annotation_level = "species", "Escherichia coli")
#>      node1          module1    node2                 module2   datasets
#> 1 msp_0005 Escherichia coli msp_0103 Clostridium_AQ innocuum n_ 1, n_ 2
#> 2 msp_0005 Escherichia coli msp_0208        Blautia_A faecis n_ 1, n_ 3
#>   intersections   mean_coef
#> 1             2  0.07445512
#> 2             2 -0.12691516