Apply cv.glmnet() for a list of module IDs and for each prevalence level
cvglm_to_coeffs_by_object.RdApply cv.glmnet() for a list of module IDs and for each prevalence level
Usage
cvglm_to_coeffs_by_object(
list_dfs,
test_module = identify_module(),
seed = NULL,
...
)Arguments
- list_dfs
List of dataframe. A normalized dataframe
- test_module
List of string. The module IDs
- seed
Numeric. The seed number, ensuring reproducibility
- ...
Additional arguments passed on to
find_all_module_neighbors()
Examples
data(data)
data(metadata)
# Simple example
normed_JPN <- norm_data(data$CRC_JPN, col_module_id = "msp_id", annotation_level = "species", prev_list = c(0.20, 0.25, 0.30))
neighbors_JPN <- cvglm_to_coeffs_by_object(list_dfs = normed_JPN, test_module = c("msp_0030", "msp_0345"), seed = 20242025)
# Example with covariate
normed_CHN <- norm_data(data$CRC_CHN, col_module_id = "msp_id", annotation_level = "species", prev_list = c(0.20, 0.25, 0.30))
neighbors_CHN <- cvglm_to_coeffs_by_object(list_dfs = normed_CHN, test_module = c("msp_0030", "msp_0345"), seed = 20242025, covar = ~study_accession, meta_df = metadata$CRC_CHN, sample_col = "secondary_sample_accession")